Best constant in Poincaré inequalities with traces: A free discontinuity approach
نویسندگان
چکیده
منابع مشابه
From Poincaré to Logarithmic Sobolev Inequalities: A Gradient Flow Approach
We use the distances introduced in a previous joint paper to exhibit the gradient flow structure of some drift-diffusion equations for a wide class of entropy functionals. Functional inequalities obtained by the comparison of the entropy with the entropy production functional reflect the contraction properties of the flow. Our approach provides a unified framework for the study of the Kolmogoro...
متن کاملFaber-krahn Inequalities for the Robin-laplacian: a Free Discontinuity Approach
We introduce a new method to prove the isoperimetric property of the ball for the first eigenvalue of the Robin-Laplacian. Our technique applies to a full range of Faber-Krahn inequalities in a nonlinear setting and for non smooth domains, including the open case of the torsional rigidity. The analysis is based on regularity issues for free discontinuity problems in spaces of functions of bound...
متن کاملOn Friedrichs – Poincaré - type inequalities ✩
Friedrichsand Poincaré-type inequalities are important and widely used in the area of partial differential equations and numerical analysis. Most of their proofs appearing in references are the argument of reduction to absurdity. In this paper, we give direct proofs of Friedrichs-type inequalities in H 1(Ω) and Poincaré-type inequalities in some subspaces of W1,p(Ω). The dependencies of the ine...
متن کاملPoincaré Inequalities in Punctured Domains 1069
The classic Poincaré inequality bounds the Lq-norm of a function f in a bounded domain Ω ⊂ Rn in terms of some Lp-norm of its gradient in Ω. We generalize this in two ways: In the first generalization we remove a set Γ from Ω and concentrate our attention on Λ = Ω \ Γ. This new domain might not even be connected and hence no Poincaré inequality can generally hold for it, or if it does hold it m...
متن کاملA Dirichlet Problem with Free Gradient Discontinuity
We prove the existence of strong solution for Blake & Zisserman functional under Dirichlet boundary condition. The result is obtained by showing partial regularity of weak solutions up to the boundary through blow-up technique and a decay property for bi-harmonic functions in half disk.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2019
ISSN: 0294-1449
DOI: 10.1016/j.anihpc.2019.07.007